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Chapter 7. Heating and Cooling Processes 
Notes: 
• Most of the material presented in this chapter is taken from Stahler and Palla (2004), 

Chap. 7 and Appendix B. 

7.1 Cosmic Rays 
We have already mentioned the fact that we need the presence of ions in molecular 
clouds to explain the abundance of most molecular species detected through observations. 
We could postulate that the needed ionization comes from stellar radiation emanating 
from either within or outside star-forming regions. But that would fail to account for the 
fact that ions exist deep inside the interior of molecular clouds devoid of (proto-) stars 
and their corresponding ionizing radiation. Something else is needed to explain the 
observations… 
 
Gamma rays, mostly consisting of relativistic protons, with some heavier nuclei as well 
as electrons, provide the answer. As they penetrate the interstellar medium and molecular 
clouds, gamma rays interact with the constituents of the gas through the Coulomb and 
nuclear forces. In molecular clouds, the most probable outcome from the inelastic 
scattering of cosmic rays with H2  results in the ionization of the latter. This reaction is 
represented with 
 
 p+ +H2 → H2

+ + e− + p+.  (7.1) 
 
This production of pairs of oppositely charged particles is the main source of ionization 
in the interiors of molecular clouds. We already know that this ionization is essential for 
establishing ion-molecule chemical reactions, but it also leads to the flux-freezing 
phenomenon, where the magnetic field becomes tied (or coupled) to the gas and vice-
versa. Furthermore, the release of the electron provides heating as it interacts with gas 
after its ejection.  
 
The rate of heat deposition per unit volume ΓCR H2( )  can be expressed as 
 
 ΓCR H2( ) = ς H2( )nH2

ΔE H2( )   erg cm−3s−1,  (7.2) 
 
where ς H2( )  is the cosmic ray ionization rate for a single H2  molecule, nH2  is the 

volume density of H2 , and ΔE H2( )  is the thermal energy added to the gas from an 
ionization event. Diverse processes must be taken into account when evaluating ΔE H2( ) , 
but the most important one is the further dissociation of H2  through interaction with the 
released electron through 
 
 e− +H2 → H +H + e− . (7.3) 
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But summing up all the different processes a value of  ΔE H2( )  7.0 eV  is obtained (with
1 eV = 1.602 ×10−12 erg ). 
 
The same cosmic ray ionizing process takes place in diffuse clouds, but this time 
involving atomic instead of molecular hydrogen. This reaction is represented with 
 
 p+ +H→ H+ + e− + p+.  (7.4) 
 
The amount of heating resulting from this process can be expressed in a similar manner 
to the previous one involving H2   
 
 ΓCR HI( ) = ς HI( )nHIΔE HI( )   erg cm−3s−1,  (7.5) 
 
with like definitions for the different parameters. It is found that  ΔE HI( )  6.0 eV . 
 
There are several methods used to determine the cosmic ray ionization rates ς H2( )  and 
ς HI( ) , but most of them rely on our understanding of ion-molecule chemical networks 
and relevant observations. We will presently discuss one technique that was developed 
here at Western (Hezareh et al. 2008, ApJ, 684, 1221). 
 
We consider the main creation and destruction networks for the HCNH+  and HCO+  
molecular ions. That is, for the first species we have 
 

 

H3
+ +HCN HNC( )→ HCNH+ +H2

HCO+ +HCN HNC( )→ HCNH+ +CO
H3O

+ +HCN HNC( )→ HCNH+ +H2O,
 (7.6) 

  
while for the latter we simply have 
 
 H3

+ +CO→ HCO+ +H2. (7.7) 
 
And both ion species are mainly destroyed through electron recombination with  
 

 

HCNH+ + e− → HCN +H
→ HNC+H
→CN +H +H

HCO+ + e− →CO+H.

 (7.8) 

 
Assuming equilibrium between the creation and destruction rates these equations can be 
combined to obtain the following expressions for the electron and H3

+  densities  
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n e−( ) = n HCN( ) + n HNC( )⎡⎣ ⎤⎦ ⋅ n H3
+( )k1 + n HCO+( )k2 + n H3O

+( )k3⎡⎣ ⎤⎦{ }
/n HCNH+( )k5

n H3
+( ) = n HCO

+( )n e−( )k6
n CO( )k4

.

 (7.9) 

  
This is a system of two equations and two unknown (i.e., n e−( )  and n H3

+( ) ) that can be 
readily solved as long as the abundances of all the other molecular species are known a 
priory (i.e., those of HCN, HNC, HCO+ , H3O

+ , HCNH+ , and CO ). Fortunately, these can 
be determined observationally with the methods covered in Chapter 6. The rate 
coefficients ki  in equations (7.9) are determined experimentally and are 

 10−8 T 300 K( )−0.5  cm3 s−1  for i.e., i = 1, 2,  and 3 ,  10−7 T 300 K( )−0.7  cm3 s−1  for 
i = 5 and 6 , and  10−9  cm3 s−1  for k4 . The determination of the electron and H3

+  
abundances through equations (7.9) is an important byproduct of our quest for the 
evaluation of the cosmic ray ionization rate, which can be accomplished by finally 
considering the main routes for the creation and destruction of H3

+
 

 

 
H2 +CR→ H2

+ + e−

H2
+ +H2 → H3

+ +H
 (7.10) 

 
and 
 

 
H3

+ +CO→ HCO+ +H2

H3
+ + e− → H2 +H

→ H +H +H.
 (7.11) 

 
The reaction between H2  and H2

+  proceeds very rapidly and is limited by the abundance 
of H2

+ , the creation of H3
+  is therefore governed by the ionization of H2  from cosmic 

rays. Again assuming equilibrium for the formation and destruction of H3
+  we get 

 

 ς H2( ) = n H3
+( )n CO( )k4 + n H3

+( )n e−( )k11
n H2( ) . (7.12) 

 
where  k11 10−7 T 300 K( )−0.5 cm3 s−1  and the density of H2  is determined using that of 
CO obtained from observations (see Chapter 6).  
 
Estimates of the cosmic ray ionization rate can vary significantly as a function of the type 
of sources studied and the techniques used. A value of ς H2( ) = 3×10−17s−1  for this 
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parameter is frequently used in the literature. The column density for H3
+  is on the order 

of 1014 cm−2 . As we will see in Chapter 8, the ionization fraction e−⎡⎣ ⎤⎦ ≡ n e
−( ) n HI( )  

will vary with the gas density, but values of 10−7 −10−8  are representative (we will revisit 
the determination of ionization fraction in the next chapter). Using equation (7.2) we then 
find that 
 

 ΓCR H2( ) = 2 ×10−13 nH2

103cm−3

⎛
⎝⎜

⎞
⎠⎟

 eV cm−3s−1.  (7.13) 

 
Theoretical considerations comparing the ionization rates of H2  and HI  show that 
 
 ς HI( ) = 2 ×10−17s−1  (7.14) 
 
and 
 

 ΓCR HI( ) = 1×10−13 nHI

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,  (7.15) 

 
which implies that the cosmic ray heating rate is the same for atomic and molecular 
gases. 

7.2 Interstellar Radiation 
Gamma rays do not constitute the only radiation field filling up the interstellar space, nor 
do they provide the sole source of heating and ionization in the interiors of molecular 
clouds. Interstellar radiation can also serve as a significant source of energy that must be 
taken into when considering the thermal balance in star-forming regions.   
 
 
 
 
 
  

7.2 Interstellar Radiation 191

Figure 7.4 Mean intensity of the interstellar radiation field, expressed as a function of frequency.

7.2.1 Major Constituents
Figure 7.4 shows the intensity of the interstellar radiation field as a function of frequency. The
form of this distribution is a consequence of the space density and mass spectrum of both stars in
the solar neighborhood and of the gas and dust obscuring their light. Thus, we may reliably use
Figure 7.4 when considering relatively nearby interstellar clouds, but not to describe conditions
out of the plane of the Galaxy or closer to its center. The figure actually plots νJν , where Jν is
the specific intensity averaged over all solid angles in the sky. From the discussion in Chapter 2,
the latter quantity is related to the monochromatic energy density uν by

Jν =
c uν
4π

Integration of the empirical Jν over all frequencies yields, after using this equation, a total
radiation energy density of 1.1 eV cm−3. This figure is intriguingly close to that for the cosmic
rays.

The energetically dominant components of the radiation field are those at millimeter, far-
infrared, and optical wavelengths, peaking at log νmax = 11.3, 12.4, and 14.5, respectively,
Here each frequency νmax is measured in Hz. The first component stems from the cosmic
background radiation, a blackbody distribution with an associated temperature of 2.74 K. Back-
ground photons heat clouds primarily by exciting the lowest rotational transitions in such abun-
dant molecules as CO. The far-infrared component in Figure 7.4 arises from interstellar dust
warmed by starlight. Molecular clouds are transparent to this radiation, which is therefore not a
heating agent.

The optical component consists of light from field stars. Suppose we crudely model the
energy distribution as arising from a diluted blackbody of temperature T̄ . To estimate this tem-
perature, we identify the peak frequency νmax as that for which the blackbody specific intensity

Figure 7.1 - Mean intensity of the interstellar 
radiation in the solar neighbourhood. 
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Figure 7.1 shows a plot of the mean intensity of the interstellar radiation in the solar 
neighbourhood; please note that νJν  is actually shown and not Jν . We can see from this 
graph that although interstellar radiation peaks at millimetre wavelengths (i.e., 
logν =11.3 ), there are two additional maxima at far-infrared ( logν =12.4 ) and optical (
logν =14.5 ) wavelengths. These three peaks correspond to radiation due to the cosmic 
microwave background (CMB; T = 2.74 K ), starlight-irradiated dust grains, and 
background light from field stars (with an equivalent blackbody peak at a temperature of 
 T  5,400 K ; see eq. (2.32) on Chapter 2), respectively. Only the CMB and optical 
radiation fields represent significant sources of heating in molecular clouds. This is 
because CMB radiation at millimetre wavelengths is likely to excite the lowest rotational 
transitions of abundant molecules such as CO (e.g., the 12C16O J = 1→ 0( )  happens at 
approximately 115 GHz or 2.6 mm), and radiation in the optical range will tend to be 
heavily absorbed by dust grains. On the other hand, the gas in molecular clouds is mostly 
transparent to radiation at far-infrared wavelengths since abundant molecular species 
(again mostly CO) lack strong transitions in that range. 
 
It is interesting to compare the peak intensity of a blackbody at a temperature of 5,400 K 
(i.e.,  νBν  1010 erg cm−2s−1sr−1 ) to that of the interstellar radiation field in the 
corresponding wavelength range (i.e.,  νJν  10−3erg cm−2s−1sr−1 ). This leads to the 
definition of a dilution factor W = 10−13 , which represents the approximate fractional 
solid angle covered by field stars on the sky. Likewise, the secondary peak seen in the 
ultraviolet at logν =15.3  in Figure 7.1 has a blackbody-equivalent temperature 
T = 3.4 ×104K , corresponding approximately to a B0 spectral type star with a dilution 
factor W = 10−17 . The UV flux enhancement factor  G  of a given radiation field, e.g., 
from a massive star, is defined as the ratio of that field’s UV flux to that of the interstellar 
radiation field. 

7.2.1  Carbon Ionization 
Carbon is the most abundant atom after hydrogen, having a relative abundance of 
nC nH = 3×10−4 . Although most photons from the interstellar radiation field are not 
energetic enough to ionize HI  at 13.6 eV, neutral carbon (or CI ) can be significantly 
ionized at 11.2 eV. This will liberate electrons that will deposit their excess kinetic 
energy resulting from the ionizing process through collisions with neighbouring atoms 
(or molecules) and heat the ambient gas. This reaction is represented by 
 
 C+ hν →C+ + e− ,  (7.16) 
  
and the rate of heat deposition per unit volume is expressed similarly as for the cosmic 
ray ionization of (atomic or molecular) hydrogen with 
 
 ΓCR CI( ) = ς CI( )nCIΔE CI( )   erg cm−3s−1. (7.17) 
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Accordingly, ς CI( )  is the ionization rate for a single CI  molecule, nCI  is the volume 
density of CI , and ΔE CI( )  is the average energy deposition from the colliding electron. 
It is found that ς CI( ) = 10−10s−1  and ΔE CI( ) = 1 eV , and therefore 
 

 ΓCI = 4 ×10−11 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,  (7.18) 

 
assuming that atomic carbon is mostly neutral. For cases that a non-negligible fraction of 
carbon is ionized, then ΓCI  must be reduced accordingly. 

7.2.2 Photoelectric Heating (Ionization of Grains) 
Electrons within dust grains can also be ejected through the photoelectric effect. That is, 
photons in the UV range have enough energy to ionize dust grains. The photons actually 
dislodge the electrons from about 10 nm inside the surface of grains; the electrons that do 
escape (most of them do not) will leave the grain with an excess of approximately 1 eV . 
This implies a net energy conversion  εPE  0.01  when we consider the typical 10 eV 
energy of the incident ionizing photon.  
 
To calculate the rate of heat deposited per unit volume we assume that the specific 
intensity is isotropic, and therefore the mean intensity Jν = Iν , and that the dust grains are 
(very approximately) spherical. To simplify calculations, we first consider the energy 
crossing the surface of the grain by an incident radiation that is uniform and 
unidirectional. In other words, let us define a constant intensity ′Iν = Jν( )  that is directed 
along, say, ez . Thus the amount of energy per unit frequency and time crossing one 
hemisphere (i.e., the one facing the incident radiation) of the grain of radius R  is 
 

 
′Eν = 2πR

2 ′Iν cos θ( )sin θ( )dθ
0

π 2

∫
= πR2 ′Iν ,

 (7.19) 

 
where θ  is the polar angle between the normal of the surface and ez . However, we must 
multiply this value by 4π  to get the total energy flux through the surface of the grain 
when the intensity is isotropic. This is because the value calculated in equation (7.19) 
must now be added for all incoming direction over the sphere. We then have that the total 
energy flux per unit frequency and volume for a grain density of nd  is 
 

 
uν = nd 4π

2R2Jν
= 4πndσ dJν ,

 (7.20) 

 
where σ d = πR

2  is the cross-section of a dust grain. It therefore follows that the rate of 
heat deposition per unit volume (due to photoelectric heating) is 
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 ΓPE = 4πndσ dεPE Jν dνFUV∫ ,  (7.21) 

 
with the frequency integration is performed over the (potentially) ionizing band, i.e., in 
the far-ultraviolet, as indicated. We saw in Chapter 2 that the total geometric cross-
section per hydrogen atom is 
 

 
Σd ≡

ndσ d

nH

= 1.1×10−21  cm2,
 (7.22) 

  
while it is determined from observations that the so-called Habing flux is  
 
 

 
4π Jν dνFUV∫  1.6 ×10−3  erg cm−2s−1.  (7.23) 

 
Performing a similar analysis for small grains, i.e., smaller and more abundant than the 
  0.1 µm  grains considered so far, then we find that ΓPE  is elevated to 
 

 ΓPE = 3×10−11 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,  (7.24) 

 
since smaller grains are more likely to eject electrons.  
 
Finally, we note that although electrons that are excited by UV radiation but do not 
escape the surface of the grains will not heat the gas, they will on the other hand elevate 
the temperature of the grains themselves. 

7.2.3 Grain Irradiation 
Photons less energetic than UV photons will not ionize dust grains but will also heat them 
through excitation of electrons. Using a similar analysis as in the previous section we can 
write for the corresponding rate of heat deposition per volume 
 
 Γd = 4πndσ d Qν ,absJν dνVIS∫ ,  (7.25) 

 
where the integral is limited to optical photons and the absorption efficiency factor 
Qν ,abs ∝ν  in the visual band (see Chapter 2). We now express the mean intensity with the 
diluted  T  5,400 K  blackbody radiation discussed in Section 7.2 and Figure 7.1 to write 
 

 

 

Γd  4πWndσ dQν ,max
ν
vmax

⋅ 2hν
3 c2

ehν kT −1
dν

0

∞

∫


8πWndσ dQν ,maxk

5T 5

h4c2vmax

x4

ex −1
dx

0

∞

∫ ,
 (7.26) 
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with W = 10−13 , x ≡ hν kT , and Qν ,abs ≡Qν ,maxν νmax . Using equation (7.22), Qν ,max = 0.1  
for νmax = 3×1014  Hz  (corresponding to the optical maximum at logν =14.5  in Figure 
7.1), as well as the necessary information from a good definite integral table we find that  
 

 Γd = 2 ×10−9 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1.  (7.27) 

7.2.4   Stellar X-rays 
The radiation from high-mass protostars within molecular clouds can also heat up the gas 
through the ionization of dust as explained in Section 7.2.2; the level of the UV field can 
exhibit an enhancement  G ≈10

6  in the vicinity of O and B stars. Likewise, the radiation 
emanating from low-mass, i.e., T-Tauri, protostars will be absorbed by dust grains by the 
irradiation process discussed in the previous section, since most of their radiation 
happens at near-infrared and optical wavelengths (again, the intensity must be scaled in 
relation to the mean interstellar radiation field to adapt equation (7.27)). 
 
But T-Tauri stars also emit 1/10,000 of their total flux in the form of X-rays, originating 
from thermal bremsstrahlung radiation in plasmas at temperatures of approximately 
107  K  (i.e, kT ≈1 keV ). These high-energy photons will mostly ionize atomic hydrogen 
and helium. The X-ray spectrum of a star will usually be fairly flat until some frequency 
νX  beyond which it will quickly fall off. If we consider a star centered within a sphere of 
atomic hydrogen gas, then we can write the flux contained in a frequency interval Δν  at 
a given position r  in the sphere as 
 

 FνΔν = Δν
νmax

LX
4πr2

e−τν , ν ≤νX,  (7.28) 

 
where LX  is the X-ray luminosity of the star and τν = nHσνr . The cross-section of 
hydrogen σν  at X-ray wavelengths is found to be proportional to ν 3  and we therefore 

write σν =σ X ν νX( )3 . If every X-ray photon is absorbed and its energy entirely 
transformed into heat we can write for the rate of heat deposition per unit volume at r  
 

 

 

ΓX  nHσνFν dν0

νX∫


nHLX
4πr2νX

σνe
−τν dν

0

νX∫ .
 (7.29) 

 
Since the radiation will be most ionizing at the highest frequency, we can see from 
equation (7.28) that flux will approximately disappear for τ X = nHσ Xr ≈1  or at a radius 
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 rX ≡ nHσ X( )−1 .  (7.30) 
 
The cross-section of hydrogen is σν = 2 ×10

−22 cm2  for X-ray photons of 1 keV. Equation 
(7.29) can be approximated (with a Gaussian integrand!) to yield 
 

 

ΓX = 1
6e 2π

LX

τ X
8 3rX

3

= 2 ×10−13 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

1 3 LX

1030  erg s−1

⎛
⎝⎜

⎞
⎠⎟

r
0.1 pc

⎛
⎝⎜

⎞
⎠⎟

−8 3

 eV cm−3s−1,
 (7.31) 

 
for r < rX .    

7.3 Cooling by Atoms 
In order to obtain some thermal balance in molecular clouds, the heating mechanisms 
previously described must be counter balanced by cooling processes. Since the gas is 
mostly composed of molecular hydrogen any heating cannot be effectively removed 
through emission from this molecule itself in most parts of molecular clouds where the 
level of excitation is not sufficient to bring about vibrational or other higher energy 
transitions. Rather, the numerous inelastic collisions that hydrogen will have with other 
components of the gas will transfer some of the energy provided through heating and lead 
to radiation from the colliding partners that will cool off the gas.   

7.3.1 Density Dependence 
Since the cooling can only happen after collisions take place, it is not surprising that the 
density of the gas will play a significant role in this process. As an example, we consider 
a two-level molecule, as we did in Chapter 6, and consider the effect of collisions on this 
molecule when embedded in a gas of density  (mostly that of hydrogen). Let us first 
focus on the case the gas density is much less than the critical density  needed for this 
transition to significantly emit radiation. We recall from Section 5.4.1 that 
 

 ncrit ≡
Aul
γ ul
,  (7.32) 

 
where the collision rate induced by the critical density is γ ulncrit  and the ‘u’ and ‘l’ 
subscripts denote the upper and lower levels, respectively. When  n ncrit  basically every 
collisional excitation is soon followed by the spontaneous emission of a photon. The 
cooling rate per unit volume Λul  due to emission of photons then equals the collision 
rate per unit volume times ΔE  the energy difference between the two levels. That is,  
 

n
ncrit
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Λul n ncrit( ) = nlnγ luΔE
= gu
gl
nlnγ ulΔEe

−ΔE kTkin ,
 (7.33) 

 
where equation (6.22) was used to relate γ lu  and γ ul . Since the level of excitation 
through collisions is (by definition) small we can approximate  nl  n  and  
 

 
 
Λul n ncrit( )  gu

gl
n2γ ulΔEe

−ΔE kTkin .  (7.34) 

 
At the opposite limit when  n ncrit  every collisional excitation is likely to be followed 
by a collisional de-excitation (as opposed to spontaneous emission). This implies that the 
two levels are in LTE and the cooling, still due to spontaneous emission from the upper 
state, is fixed by the equilibrium population levels with 
 

 

 

Λul n ncrit( ) = nuAulΔE
= gu
gl
nlAulΔEe

−ΔE kTkin .
 (7.35) 

 
Whatever the differences between the sub- and supercritical cases (i.e., equations (7.34)
and (7.35)) it is found that the cooling rate per unit volume increases with density, as 
expected.    

7.3.2 Fine-Structure Spectral Line Splitting 
Although the main emission lines of atoms are not expected to be active in a cold 
environment, it is interesting that abundant species can still provide a significant amount 
of cooling. This is due to presence of the electron fine structure present in the spectra of 
atoms (see Sec. 5.2.1 in Chapter 5). Since the fine structure Hamiltonian mostly arises 
from the presence of electron spin-orbit coupling, it is necessary for atoms to have 
electronic orbitals populated for  (such that  is a possibility). Obviously, this 
will not be possible for hydrogen or helium in cold environment, as only the  orbital 
will be populated. We then have to look for possible fine-structure lines for the most 
abundant species, e.g., oxygen and carbon.  
 
For an atom, the total angular momentum is given by 
 
 J = L+ S  (7.36) 
 
with  the orbital and electron spin angular momenta respectively. The states are 
labeled accordingly with 
 
 2S+1( )LJ  (7.37) 
 

n >1 l > 0
n = 1

L and S
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using the quantum numbers for the three angular momenta; 2S +1  is called the 
multiplicity. The spin-orbit coupling is proportional to L ⋅S . 
 
Neutral oxygen in its ground state has four electrons populating the 2p orbitals ( ), 
which combine to yield  and . The possible values for the total angular 
momentum quantum number are therefore ; the ground state is therefore 
found to be a multiplet of states with energies increasing from  to  to . The 

 occurs in the far-infrared at  and therefore readily escapes for a wide 
range of densities (i.e., as long they are not too high) and provide an important amount of 
cooling. This transition corresponds to  or . This line, like 
every fine-structure lines, are all forbidden since they are magnetic dipole transitions 
(as opposed to electric dipole) and are denoted with brackets, as in , to make 

this apparent. For this particular transition the Einstein  coefficient is about , 
and at a temperature on the order of 10 K the collisional de-excitation coefficient is 

 (see Sec. 5.1) such that . Since the abundance of 
neutral oxygen relative to hydrogen is  and the degeneracy for a given state is 

, we find that  
 

 ΛOI = 2 ×10−10 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

2

e−230  K kTkin  eV cm−3s−1  (7.38) 

 
using equation (7.34). 
 
Carbon will also bring cooling through fine-structure transitions, but in the regions where 
its abundance is most significant (in the envelopes of molecular clouds where it is not 
locked in CO) it is ionized through the process discussed in Section 7.2.1. In this case, 

 has only one 2p electron with , , and . The 
  forbidden magnetic dipole transition has  

( ),  (it is an ion, see equation (5.10) in Sec. 5.1), and 
. Once again using equation (7.34) we find  

 

 ΛCII = 3×10−9 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

2

e−92 K kTkin  eV cm−3s−1.  (7.39) 

7.4 Cooling by Carbon Monoxide 
Not surprisingly, the second most abundant molecule,  (hereafter CO), is the 
dominant molecular coolant in molecular clouds. We must be careful, however, and resist 
the temptation to blindly apply equation (7.35) since the strongest lines of CO are highly 
optically thick, which means that not all the photons resulting from rotational transitions 
will escape the molecular cloud. To analyze the problem we go back to equation (6.36) in 
Chapter 6, which we rewrite as 

l = 1
L = 1 S = 1

J = 0, 1, and 2
3P2

3P1
3P0

3P1→
3 P2 63 µm

ΔE = 2.0 ×10−2 eV T0 = 230 K

OI[ ]  63 µm
A 10−4 s−1

γ ul ≈10
−11cm3s−1 ncrit ≈10

6 −107cm−3

≈ 4 ×10−4

2J +1

CII L = 1 S = 1 2 J = 1 2 and 3 2
2P3 2 →

2 P1 2 CII[ ]  158 µm ΔE = 7.93×10−3eV

T0 = 92 K γ ul ≈10
−9 cm3s−1

Aul = 2.4 ×10
−6s−1

12C16O
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τ J+1,J =
c3NCOAJ+1,J

16πν J+1,J
3 ΔV

⋅ gJ+1
g0

⋅
T0 1→ 0( )

Tkin
e−ΔEJ 0 kTkin 1− e−ΔEJ+1,J kTkin( )

= τ10
AJ+1,J

A10
⋅ ν10

3

ν J+1,J
3 ⋅ gJ+1

g1
⋅e− ΔEJ 0−ΔE10( ) kTkin 1− e

−ΔEJ+1,J kTkin

1− e−ΔE10 kTkin

⎛
⎝⎜

⎞
⎠⎟
,

 (7.40) 

  
where Δν J+1,J = ν J+1,J ΔV c . However, we also have that 
 

 

AJ+1,J ∝
J +1
2J + 3

⎛
⎝⎜

⎞
⎠⎟ν J+1,J

3

gJ = 2J +1

ΔEJ 0 =
ΔE10
2

J J +1( )

 (7.41) 

 
and then from equation (7.40) 
 

 τ J+1,J = τ10e
−ΔE10 J+2( ) J−1( ) kTkin 1− e

−ΔE10 J+1( ) kTkin

1− e−ΔE10 kTkin

⎛
⎝⎜

⎞
⎠⎟
.  (7.42) 

 
Although the optical depth of  always extremely large ( ), the presence of the 
lone exponential in equation (7.42) will quickly bring the optical depth close to unity at 
some relatively modest critical value  that can be numerically evaluated by setting 
τ J∗+1,J∗

= 1 in this expression. The  transition is the first that will be marginally 
optically thick, i.e., higher transitions with  will be optically thin and contributing 
less escaping radiation. On the other hand, transitions with  will be so thick that 
their radiation will emanate from a smaller layer on the edge of the cloud; it follows that 
most of the total CO cooling will be due to the  transition.  
 
We now use the first of equations (7.35) to evaluate the corresponding CO cooling rate 
per unit volume 
 

 

 

ΛCO
∗ = AJ∗+1,J∗

ΔEJ∗+1,J∗
nCO

gJ∗+1

g0U
e−ΔEJ∗+1,0 kTkin


3
2
J∗ +1( )5 ΔE10( )2

kTkin

nCOA10e
−ΔE10 J∗+2( ) J∗+1( ) 2kTkin

 5 ×10−12 J∗ +1( )5 ΔE10

kTkin

e−ΔE10 J∗+2( ) J∗+1( ) 2kTkin
nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,

 (7.43) 

  
where we used equation (7.41), the proper abundance for CO (≈10−4 ), and 

τ10  103

J∗
J∗ +1→ J∗

J > J∗
J < J∗

J∗ +1→ J∗
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 nJ∗+1 = nCO
gJ∗+1
g0U

e−ΔEJ∗+1,0 kTkin .  (7.44) 

 
Figure 7.2 shows a plot of J∗  and ΛCO

∗  as a function of the kinetic temperature. A more 
accurate analysis seeking to evaluate the total CO cooling ΛCO  would need to include all 
transitions, especially those with J < J∗ , which will be optically thick. 

7.5 Thermal Effects of Dust 
Dust grains are also efficient cooling agents as molecular clouds are optically thin to the 
radiation they emit at far-infrared wavelengths. To evaluate cooling rate per unit volume 
due to grains we take advantage of the fact that, as has been noted several times before, 
optical and UV radiation absorbed by grains will be processed and “re-emitted” at longer 
wavelengths; these incident and outgoing energies can therefore be equated under the 
assumption of equilibrium. We thus write 
 
 Λd = 4πndσ d Qν ,absBν Td( )dν

0

∞

∫ ,  (7.45) 

 
where it was assumed that the emission is isotropic (i.e., accounting for the “ 4π ” factor), 
we set the absorption cross-section per unit volume to ndσ dQν ,abs , and emission can be 
suitably approximated with a blackbody function. In the far-infrared we can also model 
the absorption efficiency factor with (see Sec. 2.3) 
 

202 7 Heating and Cooling

Figure 7.9 Plot of J∗, the highest CO rotational level creating an optically thick line, shown as
a function of gas temperature. Also plotted is the volumetric cooling rate Λ∗

CO. Here we have
displayed J∗ as a smoothly varying real number, to avoid artificial jumps in the associated cooling
rate.

At fixed θ, the presence of the Boltzmann factor exp[−J(J + 1)/2θ] ensures that τJ+1,J

falls to unity at a modest J-value, which we denote as J∗. We may find this critical level by
solving

exp
[
J∗(J∗ + 1)

2θ

]
= τ10

(
J∗ + 1
2J∗ + 1

)
1 − exp[−(J∗ + 1)/θ]

1 − exp(−1/θ)

=
3 A10 NCO c3

16π ν3
10 ∆V

(
J∗ + 1
2J∗ + 1

)
1 − exp[−(J∗ + 1)/θ]

θ
.

(7.32)

In the second form of this equation, we have inserted the expression for τ10 from (7.28). Fig-
ure 7.9 shows J∗ as a function of temperature, computed for a cloud with ∆V = 1 km s−1,
nH2 = 1 × 103 cm−3, and a diameter of 1 pc, i. e., with an associated hydrogen column den-
sity of NH = 6 × 1021 cm−2. In this example, NCO = 2 × 1018 cm−2. The rise in J∗ with
temperature demonstrates the increasing importance of radiative trapping.

7.4.2 CO Cooling

All those transitions with J ! J∗ are both optically thick and have level populations in
LTE. Deep within the cloud, the photons at these frequencies transport energy by diffu-
sion from one region to another, but only escape at the cloud surface. Here, the flux is
FCO(J + 1, J) = πBν(Tg)∆νJ+1,J , where the Planckian specific intensity Bν(Tg) is evalu-

Figure 7.2 – Graph of  and the volumetric 
cooling rate  as a function of the gas 
temperature . 
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 Qν ,abs =Qν ,max
ν

νmax

⎛
⎝⎜

⎞
⎠⎟

2

,  (7.46) 

    
and using equation (7.22) we rewrite the volumetric cooling rate as 
 

 
Λd =

4πQν ,maxΣdnH
νmax
2 ν 2Bν Td( )dν

0

∞

∫

=
4πQν ,maxΣdnHk

6Td
6

h5c2νmax
2

x5

ex −1
dx

0

∞

∫ ,
 (7.47) 

 
with x = hν kTd . Using adequate values for the different parameters, as well as solving 
for the integral, yields 
 

 Λd = 1×10−10 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

Td

10 K
⎛
⎝⎜

⎞
⎠⎟

6

eV cm−3s−1.  (7.48) 

 
Finally, the gas (i.e., H2 ) will cool off due to collisions with the grain. This is because as 
a molecule, possessing a kinetic energy of 3kTkin 2 , hits a grain it will tend to stick to it 
for a long enough time to allow it to reach thermal equilibrium. Upon departing the 
surface of the grain its kinetic energy will therefore be 3kTd 2  (note the different 
temperature), and the volumetric cooling rate (more precisely, the transfer of heat from 
the gas to the grain) will be 
 

 

Λg→d =
3
2
k Tkin −Td( )ndνc

= 3
2
k Tkin −Td( )ndnH2

vrelσ d

= 3
4
k Tkin −Td( )ΣdnH

2vrel

= 2 ×10−14 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

2 Tkin

10 K
⎛
⎝⎜

⎞
⎠⎟

1
2 Tkin −Td

10 K
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,

 (7.49) 

 
with νc  the collision rate of hydrogen molecules with a grain and vrel  the average relative 
speed between colliding partners. We again emphasize that this process removes heat 
from the gas and deposit it in the dust grain population. That is, the energy extracted from 
the gas is not directly lost to interstellar space.  
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7.6 Summary of Heating and Cooling Processes 
Table 7.1 - Heating and cooling processes 

Process Heating Equation 

Cosmic rays in HI p+ + H→ H+ + e− + p+  (7.50) 

Cosmic rays in H2  p+ +H2 → H2
+ + e− + p+  (7.51) 

Carbon ionization C + hν → C+ + e−  (7.52) 

Photoelectric ejection (dust)  (7.53) 

Dust irradiation  (7.54) 

Stellar X-rays H + hν → H+ + e−  (7.55) 

  

Process Cooling Equation 

O collisional excitation O + H→ O + H + hν  (7.56) 

C+  fine structure excitation C+ + H→ C+ + H + hν  (7.57) 

CO rotational excitation CO + H2 → CO + H2 + hν  (7.58) 

Dust thermal emission  (7.59) 

Gas-grain collision  (7.60) 

 
The corresponding (and referenced) heating and cooling equations are given below. 

7.6.1 Volumetric Heating 
Cosmic rays in HI 
 

 ΓCR HI( ) = 1×10−13 nHI

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1. (7.50) 
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Cosmic rays on H2  
 

 ΓCR H2( ) = 2 ×10−13 nH2

103  cm−3

⎛
⎝⎜

⎞
⎠⎟

 eV cm−3s−1.  (7.51) 

 
Carbon ionization 
 

 ΓCI = 4 ×10−11 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1.  (7.52) 

 
Photoelectric ejection from dust 
 

 ΓPE = 3×10−11 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1.  (7.53) 

 
Dust irradiation 
 

 Γd = 2 ×10−9 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

 eV cm−3s−1,  (7.54) 

 
which only heats up the dust grain population, not the (atomic/molecular) gas. 
 
Stellar X-rays 
 

 ΓX = 2 ×10−13 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

1 3 LX

1030  erg s−1

⎛
⎝⎜

⎞
⎠⎟

r
0.1 pc

⎛
⎝⎜

⎞
⎠⎟

−8 3

 eV cm−3s−1,  (7.55) 

 
which only applies when the distance r  from the stellar X-ray source is less than the 
maximum radial distance of penetration of the X-rays (i.e., r < rX ). 

7.6.2 Volumetric Cooling 
O fine-structure excitation 
 

 ΛOI = 2 ×10−10 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

2

e−230  K kTkin  eV cm−3s−1.  (7.56) 

 
C+  fine-structure excitation 
 

 ΛCII = 3×10−9 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

2

e−92 K kTkin  eV cm−3s−1.  (7.57) 
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CO rotational excitation 
 

 
 
ΛCO

∗  5 ×10−12 J∗ +1( )5 ΔE10

kTkin

e−ΔE10 J∗+2( ) J∗+1( ) 2kTkin
nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,  (7.58) 

 
where J∗  corresponds to the rotational transition J∗ +1→ J∗  where the optical depth is 
close to unity. 
 
Dust thermal emission 
 

 Λd = 1×10−10 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

Td

10 K
⎛
⎝⎜

⎞
⎠⎟

6

 eV cm−3s−1. (7.59) 

 
Gas-grain collisions 
 

 Λg→d = 2 ×10−14 nH

103  cm−3
⎛
⎝⎜

⎞
⎠⎟

2 Tkin

10 K
⎛
⎝⎜

⎞
⎠⎟

1 2 Tkin −Td

10 K
⎛
⎝⎜

⎞
⎠⎟  eV cm−3s−1,  (7.60) 

 
where this process removes heat from the gas and deposit it in the dust grain population. 
That is, the energy extracted from the gas is not directly lost to interstellar space. 
 


